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Abstract

This work is motivated by the need for an automated approach to diagnose regression models through
residual plots with reliability and consistency. While numerical hypothesis tests are commonly used,
residual plots remain essential in regression diagnostics because conventional tests are limited to
specific types of model departures and tend to be overly sensitive. Visual inference using the lineup
protocol offers a less sensitive and more broadly applicable alternative, yet its dependence on human
judgment limits scalability. This research addresses these limitations by automating the assessment

process.

This research presents three original contributions. The first contribution provides evidence for
the effectiveness of visual inference in regression diagnostics through a human subject experiment,
demonstrating the benefits of using the lineup protocol for reliable and consistent reading of residual
plots. The second contribution introduces a computer vision model to automate the assessment of
residual plots, addressing the scalability limitation of the lineup protocol. The third contribution
presents an R package and Shiny app, providing a user-friendly interface for analysts to leverage the
computer vision model and supporting tools for diagnostic purposes. These contributions advance the
field of artificial intelligence for data visualization, enabling more efficient and accurate regression

diagnostics.
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Chapter 1

Introduction

Model diagnostics are critical in evaluating the accuracy and validity of a statistical model. In
the context of regression diagnostics, a common practice is to plot residuals against fitted values,
which serves as a starting point for evaluating the adequacy of the fit and verifying the underlying
assumptions. Visual diagnostics are frequently preferred or recommended (Cook and Weisberg 1982;
Draper and Smith 1998; Montgomery et al. 1982) due to the possibility of discovering abstract and

unquantifiable insights, however, it can be subject to over-interpretation or even neglect.

Buja et al. (2009a) introduced a visual inference framework that formalised a hypothesis testing of
graphical representations of data (henceforth referred to as the data plot) via the lineup protocol. The
protocol is inspired by the police lineup technique employed in eyewitness identification of criminal
suspects. Briefly, the protocol comprises m randomly positioned plots, where one position presents
the data plot, while the remaining m — 1 plots present the plots with the same graphical structure,
except that the data has been replaced with data consistent with the null hypothesis H, (henceforth
referred to as null plots). To compute the p-value of the visual test, the lineup will be independently
presented to a number of participants, asking them to pick the most different plot. Under H,,, the data
plot is expected to be indistinguishable from the null plots, and the probability of correctly identifying
the data plot by an observer is 1/m. If a large number of participants correctly identify the data plot,
the corresponding p-value will be small, indicating strong evidence against H,. This protocol provides

a calibration of the data plot against the null plots, ensuring that the data plot is not over-interpreted.

The lineup protocol has gained increasing traction in recent years and has already been integrated into
data analysis of various topics (see Krishnan and Hofmann 2021; Loy and Hofmann 2013; Savvides et
al. 2023; Widen et al. 2016). However, the reliance of human assessment is a fundamental aspect of

visual tests, which may restrict its widespread usage. The lineup protocol is unsuitable for large-scale
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applications, due to its high labour costs and time requirements. Moreover, it presents significant

usability issues for individuals with visual impairments, resulting in reduced accessibility.

To address these limitations, this thesis proposes a computer vision-based approach to automate the
visual inference process for assessment of linear regression residual plots. Modern computer vision
models often use a convolutional neural network to process digital images to perform various tasks
(e.g. object detection, object identification and signal processing). The development for computer
vision models has primarily focused on processing natural images, such as photographs and videos,
and its adaptation for data plots has some success (e.g. classification of time series images in Hatami
et al. 2018a) but generally limited in development. The development of computer vision models for

the assessment of residual plots will make the process more efficient, consistent, and accessible.

1.1 Thesis Outline

The thesis is structured as follows.

Chapter 2 provides empirical evidence supporting the indispensability of residual plots through a
visual inference experiment using the lineup protocol. By comparing human evaluations of residual
plots to conventional statistical tests, this chapter demonstrates the advantages of graphical methods
in detecting practical issues with model fit, while also highlighting the limitations of conventional
tests in producing overly sensitive results. The chapter contains a comprehensive literature review

related to residual diagnostics.

Chapter 3 introduces a computer vision model to automate the assessment of residual plots, ad-
dressing the scalability limitations of human-based visual inference. This model is trained to predict
a distance measure based on Kullback-Leibler divergence, quantifying the disparity between the
residual distribution of a fitted classical normal linear regression model and the reference distribution.
Performance of the model is evaluated on the human subject experiment data collected in Chapter 2.
A comprehensive literature review of data plots reading with computer vision models is contained in

the chapter.

Chapter 4 introduces a new R package, autovi, and its accompanying web interface, autovi.web,
designed to automate the assessment of residual plots in regression analysis. The package uses
a computer vision model built in Chapter 3 to predict a measure of visual signal strength (VSS)
and provides supporting information to assist analysts in diagnosing model fit. By automating this
process, autovi and autovi.web improve the efficiency and consistency of model evaluation, making

advanced diagnostic tools accessible to a broader audience.

Chapter 5 summarises the contribution of the work and the (potential) impact, and discusses some

1
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future plans.




Chapter 2

A Plot is Worth a Thousand Tests: Assess-
ing Residual Diagnostics with the Lineup

Protocol

Regression experts consistently recommend plotting residuals for model diagnosis, despite the avail-
ability of many numerical hypothesis test procedures designed to use residuals to assess problems
with a model fit. Here we provide evidence for why this is good advice using data from a visual
inference experiment. We show how conventional tests are too sensitive, which means that too often
the conclusion would be that the model fit is inadequate. The experiment uses the lineup protocol
which puts a residual plot in the context of null plots. This helps generate reliable and consistent
reading of residual plots for better model diagnosis. It can also help in an obverse situation where
a conventional test would fail to detect a problem with a model due to contaminated data. The
lineup protocol also detects a range of departures from good residuals simultaneously. Supplemental

materials for the article are available online.

2.1 Introduction

“Since all models are wrong the scientist must be alert to what is importantly wrong.” (Box

1976)

Diagnosing a model is an important part of building an appropriate model. In linear regression
analysis, studying the residuals from a model fit is a common diagnostic activity. Residuals summarise

what is not captured by the model, and thus provide the capacity to identify what might be wrong.

We can assess residuals in multiple ways. To examine the univariate distribution, residuals may be
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plotted as a histogram or normal probability plot. Using the classical normal linear regression model
as an example, if the distribution is symmetric and unimodal, we would consider it to be well-behaved.
However, if the distribution is skewed, bimodal, multimodal, or contains outliers, there would be
cause for concern. We can also inspect the distribution by conducting a goodness-of-fit test, such as

the Shapiro-Wilk normality test (Shapiro and Wilk 1965).

Scatterplots of residuals against the fitted values, and each of the explanatory variables, are commonly
used to scrutinize their relationships. If there are any visually discoverable associations, the model is
potentially inadequate or incorrectly specified. We can also potentially discover patterns not directly
connected to a linear model assumption from these residual plots, such as the discreteness or skewness
of the fitted values, and outliers. To read residual plots, one looks for noticeable departures from the
model such as non-linear pattern or heteroskedasticity. A non-linear pattern would suggest that the
model needs to have some additional non-linear terms. Heteroskedasticity suggests that the error is
dependent on the predictors, and hence violates the independence assumption. Statistical tests were
developed to provide objective assessment, for example, of non-linear patterns (e.g. Ramsey 1969),

and heteroskedasticity (e.g. Breusch and Pagan 1979).

The common wisdom of experts is that plotting the residuals is indispensable for diagnosing model fits
(Cook and Weisberg 1982; Draper and Smith 1998; Montgomery et al. 1982). The lack of empirical

evidence for the ubiquitous advice is curious, and is what this article tackles.

Additionally, relying solely on the subjective assessment of a single plot can be problematic. People
will almost always see a pattern (see Kahneman 2011), so the question that really needs answering
is whether any pattern perceived is consistent with randomness, or sampling variability, or noise.
Correctly judging whether no pattern exists in a residual plot is a difficult task. Loy (2021) emphasizes
that this is especially difficult to teach to new analysts and students, and advocates to the broader

use of the lineup protocol (Buja et al. 2009b).

The lineup protocol places a data plot in a field of null plots, allowing for a comparison of patterns
due purely by chance to what is perceived in the data plot. For residual analysis this is especially
helpful for gauging whether there is no pattern. (Figure 2.1 shows an example of a lineup of residual
plots.) In its strict use, one would insist that the data plot is not seen before seeing the lineup, so
that the observer does not know which is the true plot. When used this way, it provides an objective
test for data plots. Majumder et al. (2013a) validated that results from lineups assessed by human
observers performed similarly to conventional tests. One would not use a lineup when a conventional
test exists and is adequate because it is more manually expensive to conduct. However, where no

adequate conventional test exists, it is invaluable, as shown by Loy and Hofmann (2013). Here we use
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the lineup as a vehicle to rigorously explore why experts advise that residual plots are indispensable

despite the prevalence of numerical tests.

The paper is structured as follows. Section 2.2 describes the background on the types of departures
that one expects to detect, and outlines a formal statistical process for reading residual plots, called
visual inference. Section 2.3 describes the calculation of the statistical significance and power of the
test. Section 2.4 details the experimental design to compare the decisions made by formal hypothesis
testing, and how humans would read diagnostic plots. The results are reported in Section 2.5. We

conclude with a discussion of the presented work, and ideas for future directions.

2.2 Background

2.2.1 Departures from Good Residual Plots

Graphical summaries where residuals are plotted against fitted values, or other functions of the
predictors (expected to be approximately orthogonal to the residuals) are considered to be the most
important residual plots by Cook and Weisberg (1999). Figure 2.2A shows an example of an ideal
residual plot where points are symmetrically distributed around the horizontal zero line (red), with no
discernible patterns. There can be various types of departures from this ideal pattern. Non-linearity,
heteroskedasticity and non-normality, shown in Figure 2.2B, Figure 2.2C, and Figure 2.2D, respectively,

are three commonly checked departures.

Model misspecification occurs if functions of predictors that needed to accurately describe the
relationship with the response are incorrectly specified. This includes instances where a higher-order
polynomial term of a predictor is wrongfully omitted. Any non-linear pattern visible in the residual
plot could be indicative of this problem. An example residual plot containing visual pattern of
non-linearity is shown in Figure 2.2B. One can clearly observe the “S-shape” from the residual plot,

which corresponds to the cubic term that should have been included in the model.

Heteroskedasticity refers to the presence of non-constant error variance in a regression model. It
indicates that the distribution of residuals depends on the predictors, violating the independence
assumption. This can be seen in a residual plot as an inconsistent spread of the residuals relative
to the fitted values or predictors. An example is the “butterfly” shape shown in Figure 2.2C, or
a “left-triangle” and “right-triangle” shape where the smallest variance occurs at one side of the

horizontal axis.

Figure 2.2D shows a scatterplot where the residuals have a skewed distribution, as seen by the uneven
vertical spread. Unlike non-linearity and heteroskedasticity, non-normality is usually detected with

a different type of residual plot: a histogram or a normal probability plot. Because we focus on
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Figure 2.1: Visual testing is conducted using a lineup, as in the example here. The residual plot computed
from the observed data is embedded among 19 null plots, where the residuals are simulated
from a standard error model. Computing the p-value requires that the lineup be examined
by a number of human judges, each asked to select the most different plot. A small p-value
would result from a substantial number selecting the data plot (at position 6, exhibiting
non-linearity).

scatterplots, non-normality is not one of the departures examined in depth in this paper. (Loy et al.

2016 discuss related work on non-normality checking.)

2.2.2 Conventionally Testing for Departures

Many different hypothesis tests are available to detect specific model defects. For example, the
presence of heteroskedasticity can usually be tested by applying the White test (White 1980) or
the Breusch-Pagan (BP) test (Breusch and Pagan 1979), which are both derived from the Lagrange
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Figure 2.2: Example residual vs fitted value plots (horizontal line indicates 0): (A) classically good
looking residuals, (B) non-linear pattern indicates that the model has not captured a non-
linear association, (C) heteroskedasticity indicating that variance around the fitted model
is not uniform, and (D) non-normality where the residual distribution is not symmetric
around 0. The latter pattern might best be assessed using a univariate plot of the residuals,
but patterns B and C need to be assessed using a residual vs fitted value plot.

multiplier test (Silvey 1959) principle that relies on the asymptotic properties of the null distribution.
To test specific forms of non-linearity, one may apply the F-test as a model structural test to examine
the significance of a specific polynomial and non-linear forms of the predictors, or the significance
of proxy variables as in the Ramsey Regression Equation Specification Error Test (RESET) (Ramsey
1969). The Shapiro-Wilk (SW) normality test (Shapiro and Wilk 1965) is the most widely used test
of non-normality included by many of the statistical software programs. The Jarque-Bera test (Jarque
and Bera 1980) is also used to directly check whether the sample skewness and kurtosis match a

normal distribution.

Table 2.1 displays the p-values from the RESET, BP and SW tests applied to the residual plots in
Figure 2.2. The RESET test and BP test were computed using the resettest and bptest functions
from the R package lmtest, respectively. The SW test was computed using the shapiro.test from
the core R package stats. ! The RESET test requires the selection of a power parameter. Ramsey

(1969) recommends a power of four, which we adopted in our analysis.

For residual plots in Figure 2.2, we would expect the RESET test for non-linearity to reject residual
plot B, the BP test for heteroskedasticity to reject the residual plot C, and the SW test for non-normality
to reject residual plot D, which they all do and all tests also correctly fail to reject residual plot A.
Interestingly, the BP and SW tests also reject the residual plots exhibiting structure that they were
not designed for. Cook and Weisberg (1982) explain that most residual-based tests for a particular
departure from the model assumptions are also sensitive to other types of departures. This could be
considered a Type III error (Kimball 1957), where the null hypothesis of good residuals is correctly

rejected but for the wrong reason. Also, some types of departure can have elements of other types

!Although we did not use it, it is useful to know that the R package skedastic (Farrar 2020) also contains a large
collection of functions to test for heteroskedasticity.
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Table 2.1: Statistical significance testing for departures from good residuals for plots in Figure 2.2.
Shown are the p-values calculated for the RESET, the BP and the SW tests. The good residual
plot (A) is judged a good residual plot, as expected, by all tests. The non-linearity (B) is
detected by all tests, as might be expected given the extreme structure.

Plot Departures RESET BP SW
A None 0.779 0.133 0.728
B Non-linearity 0.000 0.000 0.039
C Heteroskedasticity  0.658 0.000 0.000
D Non-normality 0.863 0.736 0.000

of departure, for example, non-linearity can appear like heteroskedasticity. Additionally, other data
problems such as outliers can trigger rejection (or not) of the null hypothesis (Cook and Weisberg

1999).

With large sample sizes, hypothesis tests may reject the null hypothesis when there is only a small
effect. (A good discussion can be found in Kirk (1996).) While such rejections may be statistically
correct, their sensitivity may render the results impractical. A key goal of residual plot diagnostics is
to identify potential issues that could lead to incorrect conclusions or errors in subsequent analyses,
but minor defects in the model are unlikely to have a significant impact and may be best disregarded
for practical purposes. The experiment discussed in this paper specifically addresses this tension

between statistical significance and practical significance.

2.2.3 Visual Test Procedure based on Lineups

The examination of data plots to infer signals or patterns (or lack thereof) is fraught with variation in
the human ability to interpret and decode the information embedded in a graph (Cleveland and McGill
1984). In practice, over-interpretation of a single plot is common. For instance, Roy Chowdhury et
al. (2015) described a published example where authors over-interpreted separation between gene
groups from a two-dimensional projection of a linear discriminant analysis even when there were no

differences in the expression levels between the gene groups.

One solution to over-interpretation is to examine the plot in the context of natural sampling variability
assumed by the model, called the lineup protocol, as proposed in Buja et al. (2009a). Majumder et
al. (2013b) showed that the lineup protocol is analogous to the null hypothesis significance testing
framework. The protocol consists of m randomly placed plots, where one plot is the data plot, and
the remaining m — 1 plots, referred to as the null plots, are constructed using the same graphical
procedure as the data plot but the data is replaced with null data that is generated in a manner
consistent with the null hypothesis, Hy. Then, an observer who has not seen the data plot is asked to

point out the most different plot from the lineup. Under Hy, it is expected that the data plot would
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have no distinguishable difference from the null plots, and the probability that the observer correctly
picks the data plot is 1/m. If one rejects H as the observer correctly picks the data plot, then the
Type I error of this test is 1/m. This protocol requires a priori specification of H, (or at least a null
data generating mechanism), much like the requirement of knowing the sampling distribution of the

test statistic in null hypothesis significance testing framework.

Figure Figure 2.1 is an example of a lineup protocol. If the data plot at position 6 is identifiable, then
it is evidence for the rejection of H,. In fact, the actual residual plot is obtained from a misspecified

regression model with missing non-linear terms.

Data used in the m — 1 null plots needs to be simulated. In regression diagnostics, sampling data
consistent with H; is equivalent to sampling data from the assumed model. As Buja et al. (2009a)
suggested, H, is usually a composite hypothesis controlled by nuisance parameters. Since regression
models can have various forms, there is no general solution to this problem, but it sometimes can be
reduced to a so called “reference distribution” by applying one of the three methods: (i) sampling
from a conditional distribution given a minimal sufficient statistic under Hy), (ii) parametric bootstrap
sampling with nuisance parameters estimated under H,, and (iii) Bayesian posterior predictive
sampling. The conditional distribution given a minimal sufficient statistic is the best justified reference
distribution among the three (Buja et al. 2009a). Under this method, the null residuals can essentially
be simulated by independent drawing from a standard normal random distribution, then regressing
the draws on the predictors, and then re-scaling it by the ratio of the residual sum of square in two

regressions.

The effectiveness of lineup protocol for regression analysis has been validated by Majumder et al.
(2013b) under relatively simple settings with up to two predictors. Their results suggest that visual
tests are capable of testing the significance of a single predictor with a similar power to a t-test, though
they express that in general it is unnecessary to use visual inference if there exists a corresponding
conventional test, and they do not expect the visual test to perform equally well as the conventional
test. In their third experiment, where the contamination of the data violate the assumptions of the
conventional test, visual test outperforms the conventional test by a large margin. This supports the
use of visual inference in situations where there are no existing numerical testing procedures. Visual
inference has also been integrated into diagnostics for hierarchical linear models where the lineup
protocol is used to judge the assumptions of linearity, normality and constant error variance for both

the level-1 and level-2 residuals (Loy and Hofmann 2013, 2014, 2015).
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2.3 Calculation of Statistical Significance and Test Power

2.3.1 What is Being Tested?

In diagnosing a model fit using the residuals, we are generally interested in testing whether “the
regression model is correctly specified” (H,) against the broad alternative “the regression model is
misspecified” (H,). However, it is practically impossible to test this broad H, with conventional
tests, because they need specific structure causing the departure to be quantifiable in order to be
computable. For example, the RESET test for detecting non-linear departures is formulated by fitting
Y=To+ 2 TpXp + 119+ 123 + 139 +u, u~N(0,02) inordertotest Hy:y; =y, =y3=0
against H, : v, # 0 or v, # 0 or y5 # 0. Similarly, the BP test is designed to specifically test H : error
variances are all equal ({; =0 for i = 1, .., p) versus the alternative H, : that the error variances are a
multiplicative function of one or more variables (at least one {; # 0) from e? = {,, +Zf:1 Cixi+u, u~

N(oO, 05).

While a battery of conventional tests for different types of departures could be applied, this is intrinsic
to the lineup protocol. The lineup protocol operates as an omnibus test, able to detect a range of

departures from good residuals in a single application.

2.3.2 Statistical Significance

In hypothesis testing, a p-value is defined as the probability of observing test results at least as extreme
as the observed result assuming Hy, is true. Conventional hypothesis tests usually have an existing
method to derive or compute the p-value based on the null distribution. The method to estimate a
p-value for a visual test essentially follows the process detailed by VanderPlas et al. (2021). Details

are given in Appendix A.1.

2.3.3 Power of the Tests

The power of a model misspecification test is the probability that Hy, is rejected given the regression
model is misspecified in a specific way. It is an important indicator when one is concerned about
whether model assumptions have been violated. In practice, one might be more interested in knowing
how much the residuals deviate from the model assumptions, and whether this deviation is of practical

significance.

The power of a conventional hypothesis test is affected by both the true parameters 8 and the sample
size n. These two can be quantified in terms of effect size E to measure the strength of the residual
departures from the model assumptions. Details about the calculation of effect size are provided in
Section 2.4.2 after the introduction of the simulation model used in our experiment. The theoretical

power of a test is sometimes not a trivial solution, but it can be estimated if the data generating

10
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process is known. We use a predefined model to generate a large set of simulated data under different
effect sizes, and record if the conventional test rejects H,. The probability of the conventional test

rejects Hy is then fitted by a logistic regression formulated as

0.05
Pr(reject H0|H1,E)=A(log(ﬁ)+/51E), (2.1)

where A(.) is the standard logistic function given as A(z) = exp(z)(1 + exp(z))~!. The effect size E is
the only predictor and the intercept is fixed to 10g(0.05/0.95) so that Pr(reject Hy|H, E = 0) = 0.05,

the desired significance level.

The power of a visual test on the other hand, may additionally depend on the ability of the particular
participant, as the skill of each individual may affect the number of observers who identify the data
plot from the lineup (Majumder et al. 2013b). To address this issue, Majumder et al. (2013b) models
the probability of participant j correctly picking the data plot from lineup ! using a mixed-effect
logistic regression, with participants treated as random effects. Then, the estimated power of a visual
test evaluated by a single participant is the predicted value obtained from the mixed effects model.
However, this mixed effects model does not work with scenario where participants are asked to
select one or more most different plots. In this scenario, having the probability of a participant j
correctly picking the data plot from a lineup [ is insufficient to determine the power of a visual test
because it does not provide information about the number of selections made by the participant
for the calculation of the p-value. Therefore, we directly estimate the probability of a lineup being
rejected by assuming that individual skill has negligible effect on the variation of the power. This
assumption essentially averages out the subject ability and helps to simplify the model structure,
thereby obviating a costly large-scale experiment to estimate complex covariance matrices. The same

model given in Equation Equation 2.1 is applied to model the power of a visual test.

To study various factors contributing to the power of both tests, the same logistic regression model is
fit on different subsets of the collated data grouped by levels of factors. These include the distribution

of the fitted values, type of the simulation model and the shape of the residual departures.

2.4 Experimental Design

Our experiment was conducted over three data collection periods to investigate the difference between
conventional hypothesis testing and visual inference in the application of linear regression diagnostics.
Two types of departures, non-linearity and heteroskedasticity, were collected during data collection
periods I and II. The data collection period III was designed primarily to measure human responses

to null lineups so that the visual p-values can be estimated. Additional lineups for both non-linearity
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Table 2.2: Levels of the factors used in data collection periods I, II, and III.

Non-linearity Heteroskedasticity Common
Poly Order (j) SD (o) Shape (a) Ratio (b) Size (n) Distribution of the fitted values
2 0.25 -1 0.25 50 Uniform
3 1.00 0 1.00 100 Normal
6 2.00 1 4.00 300 Skewed
18 4.00 16.00 Discrete
64.00

and heteroskedasticity, using uniform fitted value distributions, were included for additional data,

and to avoid participant frustration of too many difficult tasks.

During the experiment, every participant recruited from the Prolific crowd-sourcing platform (Palan
and Schitter 2018) was presented with a block of 20 lineups. A lineup consisted of a randomly placed
data plot and 19 null plots, which were all residual plots drawn with raw residuals on the y-axis and
fitted values on the x-axis. An additional horizontal red line was added at y = 0 as a visual reference.
The data in the data plot was simulated from one of two models described in Section 2.4.1, while the
data of the remaining 19 null plots were generated by the residual rotation technique discussed in

Section Section 2.2.3.

In each lineup evaluation, the participant was asked to select one or more plots that are most different
from others, provide a reason for their selections, and evaluate how different they think the selected
plots are from others. If there is no noticeable difference between plots in a lineup, participants had
the option to select zero plots without the need to provide a reason. During the process of recording
the responses, a zero selection was considered to be equivalent to selecting all 20 plots. No participant
was shown the same lineup twice. Information about preferred pronouns, age group, education, and
previous experience in visual experiments were also collected. A participant’s submission was only

included in the analysis if the data plot is identified for at least one attention check.

Overall, we collected 7974 evaluations on 1152 unique lineups performed by 443 participants.
A summary of the factors used in the experiment can be found in Table 2.2. There were four
levels of the non-linear structure, and three levels of heteroskedastic structure. The signal strength
was controlled by error variance (o) for the non-linear pattern, and by a ratio (b) parameter for
the heteroskedasticity. Additionally, three levels of sample size (n) and four different fitted value

distributions were incorporated.
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2.4.1 Simulating Departures from Good Residuals

2.4.1.1 Non-linearity and Heteroskedasticity

Data collection period I was designed to study the ability of participants to detect non-linearity
departures from residual plots. The non-linearity departure was constructed by omitting a jth order
Hermite polynomial (Hermite 1864; originally by Laplace 1820) term of the predictor from the simple
linear regression equation. Four different values of j = 2,3, 6, 18 were chosen so that distinct shapes
of non-linearity were included in the residual plots. These include “U”, “S”, “M” and “triple-U” shape
as shown in Figure 2.3. A greater value of j will result in a curve with more turning points. It is
expected that the “U” shape will be the easiest to detect, and as the shape gets more complex it will be
harder to perceive in a scatterplot, particularly when there is noise. Figure 2.4 shows the “U” shape

for different amounts of noise (o).

Data collection period II was similar to period I but focuses on heteroskedasticity departures. We
generated the heteroskedasticity departures by setting the variance-covariance matrix of the error term
as a function of the predictor, but fitted the data with the simple linear regression model, intentionally
violated the constant variance assumption. Visual patterns of heteroskedasticity are simulated using
three different shapes (a = -1, 0, 1) including “left-triangle”, “butterfly” and “right-triangle” shapes
as displayed in Figure 2.5. Figure 2.6 shows the butterfly shape as the ratio parameter (b) is changed.

More details about the simulation process are provided in Appendix A.2.
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Figure 2.3: Polynomial forms generated for the residual plots used to assess detecting non-linearity. The
four shapes are generated by varying the order of polynomial given by j in He;(.).

2.4.1.2 Factors Common to both Data Collection Periods

Fitted values are a function of the independent variables (or predictors), and the distribution of the
observed values affects the distribution of the fitted values. Ideally, we would want the fitted values
to have a uniform coverage across the range of observed values or have a uniform distribution across
all of the predictors. This is not always present in the collected data. Sometimes the fitted values
are discrete because one or more predictors were measured discretely. It is also common to see a
skewed distribution of fitted values if one or more of the predictors has a skewed distribution. This

latter problem is usually corrected before modelling, using a variable transformation. Our simulation
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Figure 2.4: Examining the effect of o on the signal strength in the non-linearity detection, for n = 300,
uniform fitted value distribution and the “U” shape. As o increases the signal strength
decreases, to the point that the “U” is almost unrecognisable when o = 4.
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Figure 2.5: Heteroskedasticity forms used in the experiment. Three different shapes (a = —1,0,1)
are used in the experiment to create “left-triangle”, “butterfly” and “right-triangle” shapes,
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Figure 2.6: Five different values of b are used in heteroskedasticity simulation to control the strength
of the signal. Larger values of b yield a bigger difference in variation, and thus stronger
heteroskedasticity signal.

assess this by using four different distributions to represent fitted values, constructed by different
sampling of the predictor, including U(—1, 1) (uniform), N(0,0.32) (normal), lognormal(0, 0.6)/3
(skewed) and U{—1, 1} (discrete).

Figure 2.7 shows the non-linear pattern, a “U” shape, with the different fitted value distributions. We
would expect that structure in residual plots would be easier to perceive when the fitted values are

uniformly distributed.
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Three different sample sizes were used in our experiment: n = 50, 100, 300. Figure 2.8 shows the
non-linear “S” shape for different sample sizes. We expect signal strength to decline in the simulated
data plots with smaller n. We chose 300 as the upper limit, because it is typically enough for structure
to be visible in a scatterplot reliably. Beyond 300, the scatterplot should probably be used with

transparency or replaced with a density or binned plot as scatterplots suffer from over-plotting.
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Figure 2.7: Variations in fitted values, that might affect perception of residual plots. Four different
distributions are used.
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Figure 2.8: Examining the effect of signal strength for the three different values of n used in the experi-
ment, for non-linear structure with fixed o = 1.5, uniform fitted value distribution, and “S”
shape. For these factor levels, only when n = 300 is the “S” shape clearly visible.

2.4.2 Effect Size
The lineups are allocated to participants in a manner that uniformly covers the combination of
experimental factors in Table 2.2. In addition, we use effect size to measure the signal strength, which

helps in assigning a set of lineups with a range of difficulties to each participant.

Effect size in statistics measures the strength of the signal relative to the noise. It is surprisingly

difficult to quantify, even for simulated data as used in this experiment.

For the non-linearity model, the key items defining effect size are sample size (n) and the noise
level (02), and so effect size would be roughly calculated as /n/o. Increasing sample size tends
to boost the effect size, while heightened noise diminishes it. However, it is not clear how the

additional parameter for the model polynomial order, j, should be incorporated. Intuitively, the
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large j means more complex pattern, which likely means effect size would decrease. Similarly, in the
heteroskedasticity model, effect size relies on sample size (n) and the ratio of the largest to smallest
variance, b. Larger values of both would produce higher effect size, but the role of the additional

shape parameter, a, in this context is unclear.

For the purposes of our calculations we have chosen to use an approach based on Kullback-Leibler
divergence (Kullback and Leibler 1951). This formulation defines effect size to be

. /
B 1 (1 |diag(RVR")|

= —n + tr(diag(RVR’)'diag(Ro?)) + u/(RVR’) ™! )
5 (108 dlag(RoD)| n + tr(diag( ) diag(Ro“)) + i ( )y

where diag(.) is the diagonal matrix constructed from the diagonal elements of a matrix, X is the
design matrix, V is the actual covariance matrix of the error term, R = I, —X(X’X)~'X’ is the residual
operator, U, = RZ f, is the expected values of residuals where Z contains any higher order terms
of X left out of the regression equation, B, contains the corresponding coefficients, and o2I,, is the
assumed covariance matrix of the error term when Hj is true. More details about the effect size

derivation are provided in Appendix A.1.

2.5 Results

Data collection used a total of 1152 lineups, and resulted in a total of 7974 evaluations from 443
participants. Roughly half corresponded to the two models, non-linearity and heteroskedasticiy, and
the three collection periods had similar numbers of evaluations. Each participant received two of
the 24 attention check lineups which were used to filter results of participants who were clearly not
making an honest effort (only 11 of 454). To estimate a for calculating statistical significance (see
Appendix A.1) there were 720 evaluations of 36 null lineups. Neither the attention checks nor null
lineups were used in the subsequent analysis. The de-identified data, vi_survey, is made available

in the R package, visage.

The data was collected on lineups constructed from four different fitted value distributions that stem
from the corresponding predictor distribution: uniform, normal, skewed and discrete. Henceforth, we
refer to these four different fitted value distributions with respect to their predictor distribution. More
data was collected on the uniform distribution (each evaluated by 11 participants) than the others
(each evaluated by 5 participants). The analysis in Section 2.5.1-Section 2.5.4 uses only results from
lineups with uniform distribution, for a total 3069 lineup evaluations. This allows us to compare the
conventional and visual test performance in an optimal scenario. Section 2.5.5 examines how the

results may be affected if the fitted value distribution was different.
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2.5.1 Power Comparison of the Tests

Figure 2.9 present the power curves of various tests plotted against the effect size in the residuals for
non-linearity and heteroskedasticity. In each case the power of visual test is calculated for multiple
bootstrap samples leading to the many (solid orange) curves. The effect size was computed at a
5% significance level and plotted on a natural logarithmic scale. To facilitate visual calibration of
effect size values with the corresponding diagnostic plots, a sequence of example residual plots with
increasing effect sizes is provided at the bottom of these figures. These plots serve as a visual aid to
help readers understand how different effect size values translate to changes in the diagnostic plots.
The horizontal lines of dots at 0 and 1 represent the non-rejection or rejection decisions made by

visual tests for each lineup.

Figure 2.9A compares the power for the different tests for non-linear structure in the residuals. The
test with the uniformly higher power is the RESET test, one that specifically tests for non-linearity.
Note that the BP and SW tests have much lower power, which is expected because they are not
designed to detect non-linearity. The bootstrapped power curves for the visual test are effectively a
right shift from that of the RESET test. This means that the RESET test will reject at a lower effect size
(less structure) than the visual test, but otherwise the performance will be similar. In other words,
the RESET test is more sensitive than the visual test. This is not necessarily a good feature for the
purposes of diagnosing model defects: if we scan the residual plot examples at the bottom, we might
argue that the non-linearity is not sufficiently problematic until an effect size of around 3 or 3.5. The
RESET test would reject closer to an effect size of 2, but the visual test would reject closer to 3.25, for
a significance level of 0.05. The visual test matches the robustness of the model to (minor) violations

of assumptions much better.

For the heteroskedasticity pattern, the power of BP test, designed for detecting heteroskedasticity,
is uniformly higher than the other tests. The visual test power curve shifts to the right. This
shows a similar story to the power curves for non-linearity pattern: the conventional test is more
sensitive than the visual test. From the example residual plots at the bottom we might argue that
the heteroskedasticity becomes noticeably visible around an effect size of 3 or 3.5. However the
BP test would reject at around effect size 2.5. Interestingly, the power curve for the SW test (for
non-normality) is only slightly different to that of the visual test, suggesting that it performs reasonably
well for detecting heteroskedasticity, too. The power curve for the BP test suggests it is not useful for

detecting heteroskedasticity, as expected.

Overall, the results show that the conventional tests are more sensitive than the visual test. The

conventional tests do have higher power for the patterns they are designed to detect, but they typically
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Figure 2.9: Comparison of power between different tests for (A) non-linear and (B) heteroskedasticity
patterns (uniform fitted values only). Main plot shows the power curves, with dots indicating
non-reject and reject in visual testing of lineups. The multiple lines for the visual test arise
from estimating the power on many bootstrap samples. The row of scatterplots at the bottom
are examples of residual plots corresponding to the specific effect sizes marked by vertical
lines in the main plot.
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fail to detect other patterns unless those patterns are particularly strong. The visual test does not
require specifying the pattern ahead of time, relying purely on whether the observed residual plot is
detectably different from “good” residual plots. They will perform equally well regardless of the type
of model defect. This aligns with the advice of experts on residual analysis, who consider residual
plot analysis to be an indispensable tool for diagnosing model problems. What we gain from using a
visual test for this purpose is the removal of any subjective arguments about whether a pattern is
visible or not. The lineup protocol provides the calibration for detecting patterns: if the pattern in
the data plot cannot be distinguished from the patterns in good residual plots, then no discernible

problem with the model exists.

2.5.2 Comparison of Test Decisions Based on p-values

The power comparison demonstrates that the appropriate conventional tests will reject more aggres-
sively than visual tests, but we do not know how the decisions for each lineup would agree or disagree.
Here we compare the reject or fail to reject decisions of these tests, across all the lineups. Figure 2.10
shows the agreement of the conventional and visual tests using a mosaic plot for both non-linearity
patterns and heteroskedasticity patterns. For both patterns the lineups resulting in a rejection by the
visual test are all also rejected by the conventional test, except for one from the heteroskedasticity
model. This reflects exactly the story from the previous section, that the conventional tests reject

more aggressively than the visual test.

For non-linearity lineups, conventional tests and visual tests reject 69% and 32% of the time, respec-
tively. Of the lineups rejected by the conventional test, 46% are rejected by the visual test, that is,
approximately half as many as the conventional test. There are no lineups that are rejected by the

visual test but not by the conventional test.

In heteroskedasticity lineups, 76% are rejected by conventional tests, while 56% are rejected by visual
tests. Of the lineups rejected by the conventional test, the visual test rejects more than two-thirds of

them, too.

Surprisingly, the visual test rejects 1 of the 33 (3%) of lineups where the conventional test does not
reject. Figure 2.11 shows this lineup. The data plot in position seventeen displays a relatively strong
heteroskedasticity pattern, and has a strong effect size (log,(E) = 4.02), which is reflected by the
visual test p-value = 0.026. But the BP test p-value = 0.056, is slightly above the significance cutoff
of 0.05. This lineup was evaluated by 11 participants, it has experimental factors a = 0 (“butterfly”
shape), b = 64 (large variance ratio), n = 50 (small sample size), and a uniform distribution for the
predictor. It may have been the small sample size and the presence of a few outliers that may have

resulted in the lack of detection by the conventional test.
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Figure 2.10: Rejection rate (p-value < 0.05) of visual test conditional on the conventional test decision
on non-linearity (left) and heteroskedasticity (right) lineups (uniform fitted values only)
displayed using a mosaic plot. The visual test rejects less frequently than the conventional
test, and (almost) only rejects when the conventional test does. Surprisingly, one lineup in
the heteroskedasticity group is rejected by the visual test but NOT the conventional test.

Because the power curve of the visual tests are a shift to the right of the conventional test (Figure 2.9)
we examined whether adjusting the significance level (to .001, .0001, .00001, ...) of the conventional
test would generate similar decisions to that of the visual test. Interestingly, it does not: despite
resulting in less rejections, neither the RESET or BP tests come to complete agreement with the visual

test (see Appendix A.1).

2.5.3 Effect of Amount of Non-linearity

The order of the polynomial is a primary factor contributing to the pattern produced by the non-
linearity model. Figure 2.12 explores the relationship between polynomial order and power of the
tests. The conventional tests have higher power for lower orders of Hermite polynomials, and the
power drops substantially for the “triple-U” shape. To understand why this is, we return to the
application of the RESET test, which requires a parameter indicating degree of fitted values to test for,
and the recommendation is to generically use four (Ramsey 1969). However, the “triple-U” shape is
constructed from the Hermite polynomials using power up to 18. If the RESET test had been applied
using a higher power of no less than six, the power curve of “triple-U” shape will be closer to other
power curves. This illustrates the sensitivity of the conventional test to the parameter choice, and
highlights a limitation: it helps to know the data generating process to set the parameters for the
test, which is unrealistic in practice. However, we examined this in more detail (see Appendix A.1)

and found that there is no harm in setting the parameter higher than four on the tests’ operation for
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Figure 2.11: The single heteroskedasticity lineup that is rejected by the visual test but not by the BP test.
The data plot (position 17) contains a “butterfly” shape. It visibly displays heteroskedasticity,

making it somewhat surprising that it is not detected by the BP test.

lower order polynomial shapes. Using a parameter value of six, instead of four, yields higher power

regardless of generating process, and is recommended.

For visual tests, we expect the “U” shape to be detected more readily, followed by the “S”, “M” and

“triple-U” shape. From Figure 2.12, it can be observed that the power curves mostly align with these

expectations, except for the “M” shape, which is as easily detected as the “S” shape. This suggests a

benefit of the visual test: knowing the shape ahead of time is not needed for its application.
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Figure 2.12: The effect of the order of the polynomial on the power of conventional and visual tests.
Deeper colour indicates higher order. The default RESET tests under-performs significantly
in detecting the “triple-U” shape. To achieve a similar power as other shapes, a higher
order polynomial parameter needs to be used for the RESET test, but this higher than the
recommended value.

2.5.4 Effect of Shape of Heteroskedasticity

Figure 2.13 examines the impact of the shape of the heteroskedasticity on the power of of both tests.
The butterfly shape has higher power on both types of tests. The “left-triangle” and the “right-triangle”
shapes are functionally identical, and this is observed for the conventional test, where the power
curves are identical. Interestingly there is a difference for the visual test: the power curve of the

“left-triangle” shape is slightly higher than that of the “right-triangle” shape. This indicates a bias in

perceiving heteroskedasticity depending on the direction, and may be worth investigating further.

2.5.5 Effect of Fitted Value Distributions

In regression analysis, predictions are conditional on the observed values of the predictors, that is,
the conditional mean of the dependent variable Y given the value of the independent variable X,
E(Y|X). This is an often forgotten element of regression analysis but it is important. Where X is
observed, the distribution of the X values in the sample, or consequently ¥, may affect the ability to
read any patterns in the residual plots. The effect of fitted value distribution on test performance is
assess using four different distributions of fitted values stemming from the predictor distributions:
uniform, normal, discrete and lognormal (skewed). We expect that if all predictors have a uniform

distribution, it is easier to read the relationship with the residuals.

Figure 2.14 examines the impact of the fitted value distribution on the power of conventional (left)

and visual (right) tests for both the non-linearity (top) and heteroskedasticity (bottom) patterns. For
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Figure 2.13: The effect of heteroskedasticity shape (parameter a) on the power of conventional and
visual tests. The butterfly has higher power in both tests. Curiously, the visual test has a
slightly higher power for the “left-triangle” than the “right-triangle” shape, when it would
be expected that they should be similar, which is observed in conventional testing.

conventional tests, only the power curves of appropriate tests are shown: RESET tests for non-linearity
and BP tests for heteroskedasticity. For visual tests, more evaluations on lineups with uniform fitted
value distribution were collected, so to have a fair comparison, we randomly sample five from the
11 total evaluations to estimate the power curves, producing the multiple curves for the uniform

condition, and providing an indication of the variability in the power estimates.

Perhaps surprisingly, the visual tests have more consistent power across the different fitted value dis-
tributions: for the non-linear pattern, there is almost no power difference, and for the heteroskedastic
pattern, uniform and discrete have higher power than normal and skewed. The likely reason is that
these latter two have fewer observations in the tails where the heteroskedastic pattern needs to be

detected.

The variation in power in the conventional tests is at first sight, shocking. However, it is discussed,
albeit rarely, in the testing literature. See, for example, Jamshidian et al. (2007), Olvera Astivia et al.
(2019) and Zhang and Yuan (2018) which show derivations and use simulation to assess the effect of
the observed distribution of the predictors on test power. The big differences in the power curves

seen in Figure 2.14 is echoed in the results reported in these articles.

2.6 Limitations and Practicality

One of the primary limitations of the lineup protocol lies in its reliance on human judgements. In this

context, the effectiveness of a single lineup evaluation can be dependent on the perceptual ability
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Figure 2.14: Comparison of power on lineups with different fitted value distributions for conventional
and visual tests (columns) for non-linearity and heteroskedasticity patterns (rows). The
power curves of conventional tests for non-linearity and heteroskedasticity patterns are
produced by RESET tests and BP tests, respectively. Power curves of visual tests are estimated
using five evaluations on each lineup. For lineups with a uniform fitted value distribution,
the five evaluations are repeatedly sampled from the total eleven evaluations to give multiple
power curves (solid grey). Surprisingly, the fitted value distribution has produces more
variability in the power of conventional tests than visual tests. Uneven distributions, normal
and skewed distributions, tend to yield lower power.

and visual skills of the individual. However, when results from multiple individuals are combined the
outcome is encouragingly high-quality and robust. For simple plots and strong patterns just a few
individuals are needed to arrive at a clear answer, but more individuals will be needed when the plot

design is complex, or the signal strength is weak.

Using a lineup protocol removes subjectiveness in interpreting patterns in plots. A plot is compared
with draws from a null model, in much the same way as a test statistic is compared to its sampling
distribution. It is important to remove plot elements that might introduce bias, such as axis labels,

text and legends, or to make them generic.

The lineup protocol can be used cheaply and informally with the R package nullabor. There is

evidence that it is being used fairly broadly, based on software download rates and citations of the
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original papers. For residual plot analysis we recommend that the lineup be the default first plot
so that the data plot is only seen in the context of null plots. When a rigorous test is needed, we
recommend using a crowd-sourcing service, as done in gene expression experiment described in Yin
et al. (2013). While it takes extra effort it is not difficult today, and costs are tiny compared to the
overall costs of conducting a scientific experiment. We do also expect that at some point a computer

vision model can be developed to take over the task of employing people to evaluate residual plots.

For this study, simulated data was used to provide a precisely controlled environment within which to
compare results from conventional testing to those from visual testing. We also explored only the
most commonly used, the residual vs fitted value plots. However, we expect the behaviour of the
conventional test and the visual test to be similar when observed residuals are diagnosed with this
type of plot or other residual plots. The conventional tests will be more sensitive to small departures
from the null. They will also fail to detect departures when residuals have some contamination,
like outliers or anomalies, as is often encountered when working with data. The lineup approach is
well-suited for generally interpreting data plots, and also detecting unexpected patterns not related
to the model. This is supported by earlier research (e.g. Loy et al. 2016; Loy and Hofmann 2015;
Roy Chowdhury et al. 2015; VanderPlas and Hofmann 2016; Wickham et al. 2010).

2.7 Conclusions

This paper has described experimental evidence providing support for the advice of regression analysis
experts that residual plots are indispensable methods for assessing model fit, using the formal framework
of the lineup protocol. We conducted a perceptual experiment on scatterplots of residuals vs fitted
values, with two primary departures from good residuals: non-linearity and heteroskedasticity. We
found that conventional residual-based statistical tests are more sensitive to weak departures from
model assumptions than visual tests. That is, a conventional test concludes there are problems with
the model fit almost twice as often as a human. Conventional tests often reject the null hypothesis
when departures in the form of non-linearity and heteroskedasticity are not visibly different from

null residual plots.

While it might be argued that the conventional tests are correctly detecting small but real effects,
this can also be seen as the conventional tests are rejecting unnecessarily. Many of these rejections
happen even when downstream analysis and results would not be significantly affected by the small
departures from a good fit. The results from human evaluations provide a more practical solution,
which reinforces the statements from regression experts that residual plots are an indispensable
method for model diagnostics. Further work would be needed to quantify how much departure from

good residuals is too much.
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It is important to emphasize that this work also supports a change in common practice, which is to
deliver residual plots as a lineup, embedded in a field of null plots, rather than be viewed out of
context. A residual plot may contain many visual features, but some are caused by the characteristics
of the predictors and the randomness of the error, not by the violation of the model assumptions.
These irrelevant visual features have a chance to be filtered out by participants with a comparison to
null plots, resulting in more accurate reading. The lineup enables a careful calibration for reading
structure in residual plots, and also provides the potential to discover interesting and important

features in the data not directly connected to linear model assumptions.

Human evaluation of residuals is expensive, time-consuming and laborious. This is possibly why
residual plot analysis is often not done in practice. However, with the emergence of effective computer

vision, it is hoped this work helps to lay the foundation for automated residual plot assessment.

The experiment also revealed some interesting results. For the most part, the visual test performed
similarly to the appropriate conventional test with a shift in the power curve. Unlike conventional tests,
where one needs to specifically test for non-linearity or heteroskedasticity the visual test operated
effectively across the range of departures from good residuals. If the fitted value distribution is not
uniform, there is a small loss of power in the visual test. Surprisingly, there is a big difference in
power of the conventional test across fitted value distributions. Another unexpected finding was that
the direction of heteroskedasticity appears to affect the ability to visually detect it: both triangles
being more difficult to detect than the butterfly, and a small difference in detection between left- and

right-triangle.
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Chapter 3

Automated Assessment of Residual Plots

with Computer Vision Models

Plotting the residuals is a recommended procedure to diagnose deviations from linear model as-
sumptions, such as non-linearity, heteroscedasticity, and non-normality. The presence of structure
in residual plots can be tested using the lineup protocol to do visual inference. There are a variety
of conventional residual tests, but the lineup protocol, used as a statistical test, performs better
for diagnostic purposes because it is less sensitive and applies more broadly to different types of
departures. However, the lineup protocol relies on human judgment which limits its scalability. This
work presents a solution by providing a computer vision model to automate the assessment of residual
plots. It is trained to predict a distance measure that quantifies the disparity between the residual
distribution of a fitted classical normal linear regression model and the reference distribution, based
on Kullback-Leibler divergence. From extensive simulation studies, the computer vision model exhibits
lower sensitivity than conventional tests but higher sensitivity than human visual tests. It is slightly
less effective on non-linearity patterns. Several examples from classical papers and contemporary
data illustrate the new procedures, highlighting its usefulness in automating the diagnostic process

and supplementing existing methods.

3.1 Introduction

Plotting residuals is commonly regarded as a standard practice in linear regression diagnostics (Belsley
et al. 1980; Cook and Weisberg 1982). This visual assessment plays a crucial role in identifying
whether model assumptions, such as linearity, homoscedasticity, and normality, are reasonable. It

also helps in understanding the goodness of fit and various unexpected characteristics of the model.
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Generating a residual plot in most statistical software is often as straightforward as executing a line
of code or clicking a button. However, accurately interpreting a residual plot can be challenging. A
residual plot can exhibit various visual features, but it is crucial to recognize that some may arise
from the characteristics of predictors and the natural stochastic variation of the observational unit,
rather than indicating a violation of model assumptions (Li et al. 2024). Consider Figure 3.1 as an
example, the residual plot displays a triangular left-pointing shape. The distinct difference in the
spread of the residuals across the fitted values may result in the analyst suggesting that there may be
heteroskedasticity, however, it is important to avoid over-interpreting this visual pattern. In this case,
the fitted regression model is correctly specified, and the triangular shape is actually a result of the

skewed distribution of the predictors, rather than indicating a flaw in the model.

The concept of visual inference, as proposed by Buja et al. (2009a), provides an inferential frame-
work to assess whether residual plots indeed contain visual patterns inconsistent with the model
assumptions. The fundamental idea involves testing whether the true residual plot visually differs
significantly from null plots, where null plots are plotted with residuals generated from the residual
rotation distribution (Langsrud 2005), which is a distribution consistent with the null hypothesis
H, that the linear regression model is correctly specified. Typically, the visual test is accomplished
through the lineup protocol, where the true residual plot is embedded within a lineup alongside
several null plots. If the true residual plot can be distinguished from the lineup, it provides evidence

for rejecting Hy,.

The practice of delivering a residual plot as a lineup is generally regarded as a valuable approach.
Beyond its application in residual diagnostics, the lineup protocol has been integrated into the
analysis of diverse subjects. For instance, Loy and Hofmann (2013, 2014, 2015) illustrated its
applicability in diagnosing hierarchical linear models. Additionally, Widen et al. (2016) and Fieberg
et al. (2024) demonstrated its utility in geographical and ecology research respectively, while Krishnan

and Hofmann (2021) explored its effectiveness in forensic examinations.

A practical limitation of the lineup protocol lies in its reliance on human judgements (see Li et al.
2024 about the practical limitations). Unlike conventional statistical tests that can be performed
computationally in statistical software, the lineup protocol requires human evaluation of images. This
characteristic makes it less suitable for large-scale applications, given the associated high labour costs
and time requirements. There is a substantial need to develop an approach to substitute these human

judgement with an automated reading of data plots using machines.

The utilization of computers to interpret data plots has a rich history, with early efforts such as

“Scagnostics” by Tukey and Tukey (1985), a set of numerical statistics that summarize features of

28



Advances in Artificial Intelligence for Data Visualization

scatter plots. Wilkinson et al. (2005) expanded on this work, introducing scagnostics based on
computable measures applied to planar proximity graphs. These measures, including, but not limited
to, “Outlying”, “Skinny”, “Stringy”, “Straight”, “Monotonic”, “Skewed”, “Clumpy”, and “Striated”,
aimed to characterize outliers, shape, density, trend, coherence and other characteristics of the data.
While this approach has been inspiring, there is a recognition (Buja et al. 2009a) that it may not
capture all the necessary visual features that differentiate true residual plots from null plots. A more
promising alternative entails enabling machines to learn the function for extracting visual features

from residual plots. Essentially, this means empowering computers to discern the crucial visual

features for residual diagnostics and determining the method to extract them.

Modern computer vision models are well-suited for addressing this challenge. They rely on deep
neural networks with convolutional layers (Fukushima and Miyake 1982). These layers use small,
sliding windows to scan the image, performing a dot product to extract local features and patterns.
Numerous studies have demonstrated the efficacy of convolutional layers in addressing various vision
tasks, including image recognition (Rawat and Wang 2017). Despite the widespread use of computer
vision models in fields like computer-aided diagnosis (Lee and Chen 2015), pedestrian detection
(Brunetti et al. 2018), and facial recognition (Emami and Suciu 2012), their application in reading
data plots remains limited. While some studies have explored the use of computer vision models
for tasks such as reading recurrence plots for time series regression (Ojeda et al. 2020), time series
classification (Chu et al. 2019; Hailesilassie 2019; Hatami et al. 2018b; Zhang et al. 2020), anomaly
detection (Chen et al. 2020), and pairwise causality analysis (Singh et al. 2017), the application of

reading residual plots with computer vision models is a new field of study.

In this chapter, we develop computer vision models and integrate them into the residual plots
diagnostics workflow, addressing the need for an automated visual inference. The chapter is structured
as follows. Section 3.2 discusses various specifications of the computer vision models. Section 3.3
defines the distance measure used to detect model violations, while Section 3.4 explains how the
computer vision models estimate this distance measure. Section 3.5 covers the statistical tests based
on the estimated distance, and Section 3.6 introduces a Model Violations Index, which offers a quicker
and more convenient assessment. Sections 3.7, 3.8, and 3.9 detail the data preparation, model
architecture, and training process, respectively. The results are presented in Section 3.10. Example
dataset applications are discussed in Section 3.11. Finally, we conclude with a discussion of our

findings and propose ideas for future research directions.
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Figure 3.1: An example residual vs fitted values plot (red line indicates O corresponds to the x-intercept,
i.e. y = 0). The vertical spread of the data points varies with the fitted values. This
often indicates the existence of heteroskedasticity, however, here the result is due to skewed
distribution of the predictors rather than heteroskedasticity. The Breusch-Pagan test rejects
this residual plot at 95% significance level (p-value = 0.046).

3.2 Model Specifications

There are various specifications of the computer vision model that can be used to assess residual plots.
We discuss these specifications below focusing on two key components of the model formula: the

input and the output format.

3.2.1 Input Formats
Deep learning models are in general very sensitive to the input data. The quality and relevance of the
input data greatly influence the model’s capacity to generate insightful and meaningful results. There

are several designs of the input format that can be considered.

A straightforward architecture of the input layer involves feeding a vector of residuals along with a
vector of fitted values, essentially providing all the necessary information for creating a residuals vs
fitted values plot. However, a drawback of this method is the dynamic input size, which changes based
on the number of observations. For modern computer vision models implemented in mainstream
software like TensorFlow (Abadi et al. 2016), the input shape is typically fixed. One solution is to
pad the input vectors with leading or trailing zeros when the input tensor expects longer vectors, but

it may fail if the input vector surpasses the designed length.

Another strategy is to summarize the residuals and fitted values separately using histograms and

utilize the counts as the input. By controlling the number of bins in the histograms, it becomes
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possible to provide fixed-length input vectors. Still, since histograms only capture the marginal
distribution of residuals and fitted values respectively, they can not be used to differentiate visual

patterns with same marginal distributions but different joint distributions.

Another architecture of the input layer involves using an image as input. The primary advantage
of this design, as opposed to the vector format, is the availability of the existing and sophisticated
image processing architectures developed over the years, such as the VGG16 architecture proposed in
Simonyan and Zisserman (2014). These architectures can effectively capture and summarize spatial
information from nearby pixels, which is less straightforward with vector input. While encoding data
points as pixels might lead to some loss of detail, this approach still provides a more comprehensive
representation than the histogram-based strategy because it captures the joint distribution of fitted
values and residuals. The main considerations are the image resolution and the aesthetics of the
residual plot. In general, a higher resolution provides more information to the model but comes
with a trade-off of increased complexity and greater difficulty in training. As for the aesthetics of
the residual plot, a practical solution is to consistently present residual plots in the same style to the
model. This implies that the model can not accept arbitrary images as input but requires the use
of the same pre-processing pipeline to convert residuals and fitted values into a standardized-style

residual plot.

Providing multiple residual plots to the model, such as a pair of plots, a triplet or a lineup is also
a possible option. Chopra et al. (2005) have shown that computer vision models designed for
image comparison can assess whether a pair of images are similar or dissimilar. Applied to our
specific problem, we can define null plots of a fitted regression model to be similar to each other,
while considering true residual plots to be distinct from null plots of any fitted regression model. A
triplet constitutes a set of three images, denoted as image,, image, and images. It is often used
to predict whether image, or images is more similar to image;, proving particularly useful for
establishing rankings between samples. For this setup, we can apply the same criteria to define
similarity between images. However, it is important to note that these two approaches usually require
additional considerations regarding the loss function and, at times, non-standard training processes

due to shared weights between different convolutional blocks.

Presenting a lineup to a model aligns closely with the lineup protocol. However, as the number of
residual plots in a lineup increases, the resolution of the input image grows rapidly, posing challenges
in training the model. We experimented with this approach in a pilot study, but the performance of

the trained model was sub-optimal.

Taking into account the implementation cost and the need for model interpretability, we used the
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single residual plot input format in this chapter.

3.2.2 Output Formats
Given that the input is a single residual plot represented as a fixed-resolution image, we can choose

the output from the computer vision model to be either binary (classification) or numeric (regression).

The binary outcome can represent whether the input image is consistent with a null plot as determined
by either (1) the data generating process or (2) the result of a visual test based on human judgement.
Training a model following the latter option requires data from prior human subject experiments,
presenting difficulties in controlling the quality of data due to variations in experimental settings
across different studies. Additionally, some visual inference experiments are unrelated to linear
regression models or residual plot diagnostics, resulting in a limited amount of available training

data.

Alternatively, the output could be a meaningful and interpretable numerical measure useful for
assessing residual plots, such as the strength of suspicious visual patterns reflecting the extent of
model violations, or the difficulty index for identifying whether a residual plot has no issues. However,
these numeric measures are often informally used in daily communication but are not typically
formalized or rigorously defined. For the purpose of training a model, this numeric measure has to

be quantifiable.

In this study, we chose to define and use a distance between a true residual plot and a theoretically
“good” residual plot. This is further explained in Section 3.3. Vo and Hays (2016) have also demon-
strated that defining a proper distance between images can enhance the matching accuracy in image

search compared to a binary outcome model.

3.2.3 Auxiliary Information with Scagnostics

In Section 3.1, we mention that scagnostics consist of a set of manually designed visual feature
extraction functions. While our computer vision model will learn its own feature extraction function
during training, leveraging additional information from scagnostics can enhance the model’s predictive

accuracy.

For each residual plot used as an input image, we calculated four scagnostics — “Monotonic”, “Sparse”,
“Splines”, and “Striped” — using the cassowaryr R package (Mason et al. 2022). These computed
measures, along with the number of observations from the fitted model, were provided as the second
input for the computer vision model. We selected these scagnostics due to their reliability and
efficiency, as other scagnostics occasionally caused R process crashes (approximately 5% of the time)

during training data preparation, due to a bug in the interp R package (Gebhardt et al. 2023).
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Although the package maintainer later fixed this bug at our request, the fix came too late to retrain
the model, and additionally, their high computational costs make them unsuitable for rapid inference,

which was a critical factor in our choice.

3.3 Distance from a Theoretically “Good” Residual Plot

To develop a computer vision model for assessing residual plots within the visual inference framework,
it is important to precisely define a numerical measure of “difference” or “distance” between plots.
This distance can take the form of a basic statistical operation on pixels, such as the sum of square
differences, however, a pixel-to-pixel comparison makes little sense in comparing residual plots where
the main interest would be structural patterns. Alternatively, it could involve established image
similarity metrics like the Structural Similarity Index Measure (Wang et al. 2004) which compares
images by integrating three perception features of an image: contrast, luminance, and structure
(related to average, standard deviation and correlation of pixel values over a window, respectively).
These image similarity metrics are tailored for image comparison in vastly different tasks to evaluating
data plots, where only essential plot elements require assessment (Chowdhury et al. 2018). We can
alternatively define a notion of distance by integrating key plot elements (instead of key perception
features like luminance, contrast, and structure), such as those captured by scagnostics mentioned in
Section 3.1, but the functional form still needs to be carefully refined to accurately reflect the extent

of the violations.

In this section, we introduce a distance measure between a true residual plot and a theoretically ‘good’
residual plot. This measure quantifies the divergence between the residual distribution of a given
fitted regression model and that of a correctly specified model. The computation assumes knowledge
of the data generating processes for predictors and response variables. Since these processes are
often unknown in practice, we will discuss a method to estimate this distance using a computer vision

model in Section 3.4.

3.3.1 Residual Distribution

For a classical normal linear regression model, y = X3 +e, the residual é are derived as the difference
of the fitted values and observed values y. Suppose the data generating process is known and the
regression model is correctly specified, by the Frisch-Waugh-Lowell theorem (Frisch and Waugh 1933),
residuals € can also be treated as random variables and written as a linear transformation of the error
e formulated as é = Re, where R = I, —X(X " X)X is the residual operator, I, is a n by n identity

matrix, and n is the number of observations.

One of the assumptions of the classical normal linear regression model is that the error e follows
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a multivariate normal distribution with zero mean and constant variance, i.e., e ~ N(0,,0?I,). It
follows that the distribution of residuals é can be characterized by a certain probability distribution,
denoted as Q, which is transformed from the multivariate normal distribution. This reference
distribution Q summarizes what “good” residuals should follow given the design matrix X is known

and fixed.

Suppose the design matrix X has linearly independent columns, the trace of the hat matrix H =
X(X"X)"'x T will equal to the number of columns in X denoted as k. As a result, the rank of R is n—k,
and Q is a degenerate multivariate distribution. To capture the characteristics of Q, such as moments,
we can simulate a large numbers of € and transform it to e to get the empirical estimates. For simplicity,
in this study, we replaced the variance-covariance matrix of residuals cov(e,e) = Ro*R" = Ro? with
a full-rank diagonal matrix diag(Ro?), where diag(.) sets the non-diagonal entries of a matrix to

zeros. The resulting distribution for Q is N(0,,, diag(Ro?)).

Distribution Q is derived from the correctly specified model. However, if the model is misspecified,
then the actual distribution of residuals denoted as P, will be different from Q. For example, if the data
generating process contains variables correlated with any column of X but missing from X, causing an
omitted variable problem, P will be different from Q because the residual operator obtained from the
fitted regression model will not be the same as R. Besides, if the & follows a non-normal distribution

such as a multivariate lognormal distribution, P will usually be skewed and has a long tail.

3.3.2 Distance of P from Q

Defining a proper distance between distributions is usually easier than defining a proper distance
between data plots. Given the true residual distribution Q and the reference residual distribution P,
we used a distance measure based on Kullback-Leibler divergence (Kullback and Leibler 1951) to

quantify the difference between two distributions as

where Dg; is defined as
Dx1 :f log Mp(e)de, (3.2)
ged(e)

and p(.) and g(.) are the probability density functions for distribution P and distribution Q, respectively.

This distance measure was first proposed in Li et al. (2024). It was mainly designed for measuring

the effect size of non-linearity and heteroskedasticity in a residual plot. Li et al. (2024) have derived
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that, for a classical normal linear regression model that omits necessary higher-order predictors
Z and the corresponding parameter f,, and incorrectly assumes & ~ N(0,,c?I,) while in fact
€ ~N(0,, V) where V is an arbitrary symmetric positive semi-definite matrix, Q can be represented as
N(RZp,,diag(RVR)). Note that the variance-covariance matrix is replaced with the diagonal matrix

to ensure it is a full-rank matrix.

Since both P and Q are adjusted to be multivariate normal distributions, Equation 3.2 can be further

expanded to

Wi

1
Dgp = = [ log ———— —n+ (W ldiag(Ro?)) + u W ), .
.= 5 (108 st — o+ (W ding(Ro ™)+ W, 63

where u, = RZf,, and W = diag(RVR). The assumed error variance o2 is set to be tr(V)/n, which

is the expectation of the estimated variance.

3.3.3 Non-normal P
For non-normal error €, the true residual distribution P is unlikely to be a multivariate normal
distribution. Thus, Equation 3.3 given in Li et al. (2024) will not be applicable to models violating

the normality assumption.

To evaluate the Kullback-Leibler divergence of non-normal P from Q, the fallback is to solve Equa-
tion 3.2 numerically. However, since e is a linear transformation of non-normal random variables, it
is very common that the general form of P is unknown, meaning that we can not easily compute p(e)
using a well-known probability density function. Additionally, even if p(e) can be calculated for any
e € R", it will be very difficult to do numerical integration over the n-dimensional space, because n

could be potentially very large.

In order to approximate Dg; in a practically computable manner, the elements of e are assumed to
be independent of each other. This assumption solves both of the issues mentioned above. First,
we no longer need to integrate over n random variables. The result of Equation 3.2 is now the sum
of the Kullback-Leibler divergence evaluated for each individual residual due to the assumption of
independence between observations. Second, it is not required to know the joint probability density
p(e) any more. Instead, the evaluation of Kullback-Leibler divergence for an individual resi